Accuracy of internal fields in volume integral equation simulations of light scattering.
نویسندگان
چکیده
We studied the accuracy of volume integral equation simulations of internal fields in small particles illuminated by a monochromatic plane wave as well as the accuracy of the scattered fields. We obtained this accuracy by considering scattering by spheres and comparing the simulated internal and scattered fields with those obtained by Mie theory. The accuracy was measured in several error norms (e.g., mean and root mean square). Furthermore, the distribution of the errors within the particle was obtained. The accuracy was measured as a function of the size parameter and the refractive index of the sphere and as a function of the cube size used in the simulations. The size parameter of the sphere was as large as 10, and three refractive indices were considered. The errors in the internal field are located mostly on the surface of the sphere, and even for fine discretizations they remain relatively large. The errors depend strongly on the refractive index of the particle. If the discretization is kept constant, the errors depend only weakly on the size parameter. We also examined the case of sharp internal field resonances in the sphere. We show that the simulation is able to reproduce the resonances in the internal field, although at a slightly larger refractive index.
منابع مشابه
Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations
In this paper, scattering of a plane and monochromatic electromagnetic wave from a nano-wire is simulated using surface integral equations. First, integral equationsgoverning unknown fields on the surface is obtained based on Stratton-Cho surface integral equations. Then, the interaction of the wave with a non-plasmonic as well as a palsmonic nano-wire is considered. It is shown that in scatter...
متن کاملPhysical Optics Calculation of Electromagnetic Scattering From Haack Series Nose Cone
In this paper, the physical optics method is used to study the problem of electromagnetic scattering from Haack series nose cone. First, a meshing scheme is introduced which approximates the curvature of the surface by piecewise linear functions in both axial and rotational directions. This results in planar quadrilateral patches and enables efficient determination of the illuminated region and...
متن کاملThree Dimensional Laminar Convection Flow of Radiating Gas over a Backward Facing Step in a Duct
In this study, three-dimensional simulations are presented for laminar forced convection flow of a radiating gas over a backward-facing step in rectangular duct. The fluid is treated as a gray, absorbing, emitting and scattering medium. The three-dimensional Cartesian coordinate system is used to solve the governing equations which are conservations of mass, momentum and energy. These equations...
متن کاملExtension and Validation of an Advanced Integral Equation Model for Bistatic Scattering from Rough Surfaces
This paper deals with the modeling of bistatic scattering from a randomly rough surface. An advanced integral equation model is presented by giving its general framework of model developments, model expressions, and predictions of bistatic scattering for various surface parameters. Extension work to improve the model accuracy is also reported in more detail. In particular, the transition functi...
متن کاملIntegral Equation for Scattering of Light by a Strong Magnetostatic Field in Vacuum
When a strong magnetostatic field is present, vacuum effectively appears as a linear, uniaxial, dielectric–magnetic medium for small–magnitude optical fields. The availability of the frequency–domain dyadic Green function when the magnetostatic field is spatially uniform facilitates the formulation of an integral equation for the scattering of an optical field by a spatially varying magnetostat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 37 36 شماره
صفحات -
تاریخ انتشار 1998